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Abstract 

Responding to the needs of quality and robustness of analysis and management of degradation of 

equipment, to increase their life cycle and to expand these facilities to become more and more sophisticated 

and agronomic. This work proposes a contribution to increase the survival of a gas turbine, installed in a gas-

compression plant, with a comparative study between the two-parameter Weibull distribution. A new modified 

Weibull distribution was proposed also to reduce the risk of occurrence of failure in this rotating machine. A 

Statistical analysis and validation on the synthesis of turbine's reliability data and failures were considered, with 

a particular focus on the use of this data to increase the availability of this type of machine. So, developing a 

maintenance plan based on their reliability indices for scheduled inspections 

 

Keywords: Failure analysis, malfunction analysis, availability, reliability estimation, failure occurrence, maintenance plan, 

gas turbine, two-parameter Weibull, modified Weibull.  

 

1. INTRODUCTION 

 

The operation of gas transport facilities is subject 

to numerous regulatory, technical and economic 

constraints. Some gas installations cannot stop 

functioning under penalty of generating enormous 

financial losses, but a defect or failure can also 

adversely affect the quality of their production. It is 

against this backdrop that the present work proposes 

to prevent untimely breakdowns, to reduce the 

maintenance downtime duration, and optimizing the 

operating time of each component by deciding to 

intervene just in time using a reliability and 

availability approach for gas turbines. And also, this 

work is materialized by the development of 

application research work on the right reliability 

tools, to optimize maintenance and to provide 

engineering with advice and support for improving 

the gas transport system.  

In fact, modern gas compression and transport 

installations are becoming more and more complex 

and their monitoring is more sophisticated. At the 

same time, reliability, availability and operational 

safety have become very important and a real 

challenge for these installations. Recently, several 

works have been carried out in the industrial 
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literature to develop diagnostic methods and robust 

reliability of this system. Xiao et al. in [42] have 

proposed an analysis for reliability measures with 

their evaluation for the prediction of the life of gas 

turbine blades. Nadji Hadroug et al. in [26] modeled 

the reliability of a gas turbine using an adaptive 

neuro-fuzzy inference system. Jingfeng Zhao et al. 

in [16] studied the reliability with their evaluation for 

an electrical multiple energy storage system, and 

Ahmed Zohair Djeddi et al. in [5] modeled the 

reliability of gas turbines based on an optimized 

failure function. As well as Dengji Zhou et al. in [10] 

proposed a strategy for diagnosing gas turbine 

failures with thermodynamic analysis limiting the 

interference of boundary conditions. Choayb Djeddi 

et al. in [9] realized a robust diagnostic system for 

the protection of a gas turbine against failures based 

on a neuro-fuzzy monitoring approach. 

In addition, several other works have been 

developed in recent years in this field, for the design 

of robust diagnostic and supervision systems with 

implementation of monitoring and diagnostic 

algorithms with reliability approaches based on the 

various information available ; Adel Alblawi in [1] 

proposed an approach to diagnose turbine failures 

based on the development of thermodynamic models 

https://doi.org/10.29354/diag/146240
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coupled with the concept of artificial neural 

networks. As well Ben Rahmoune Mohamed et al. in 

[7, 22] proposed a monitoring system of a gas 

turbine, for the fault tolerant control of this rotating 

machine, using advanced techniques of artificial 

neural networks. This with the aim of developing 

predictive models for the detection and isolation of 

faults affecting the gas turbine studied. Other 

applications of artificial neural networks techniques 

have been developed by Dengji Zhou et al. in [13] 

and Mingliang Bai et al. in [20] for several 

investigations in the detection of failures of gas 

turbines, in this sense Morteza Montazeri Gh et al. in 

[23-24] worked on the concept of fuzzy logic type 2, 

for the learning of the characteristic maps of the 

defects using a neural model with automatic growth 

applied to gas turbines. Also, Boulanouar Saadat et 

al. in [8] studied the estimation of uptime in gas 

turbines using a prognostic modeling approach 

guided by studied turbine operating data and Tomas 

Olsson et al. in [41] tested turbine operating data to 

predict long-term degradation. 

Hence, the learning approach has been widely 

studied, for applications for the diagnosis of gas 

turbines, Pak Kin Wong et al. in [28] developed a 

method of fault diagnosis for gas turbine generator 

systems in real time with an extreme learning 

machine and Shi-sheng Zhong et al. in [38] realized 

a transfer learning with CNN for the development of 

a new approach to gas turbine failure diagnosis. 

Also, Yanyan Shen et al. in [45], have proposed a 

hybrid fault diagnosis strategy with machine 

learning for applications to aircraft gas turbines. 

In addition, other work has focused on the 

evaluation of the fatigue reliability of this type of 

rotating machine, such as the work of Herman Shen 

M.H. in [15] and the work of Rongzhuo Sun et al. in 

[32] focused on the coupling of faults in diagnosis 

with the control of gas turbines, thus the work Sandy 

Rahme et al. in [34] focused on the development of 

adaptive observers in sliding mode for the fault 

diagnosis of a gas turbine and the work of Yu Zhi 

Chen et al. in [46] and Zengbu Liao et al. in [47] 

focused on performance improvement and impact 

analysis on gas turbines with modern diagnostic 

approaches. 

However, the reliability of systems in industrial 

processes is the ability to withstand failures and 

loads experienced during its operation of a real-time 

process. In fact, maintaining industrial installations 

in good condition is an essential activity in the search 

for performance in terms of reliability, 

maintainability, availability, and safety in turbine 

systems [2-4, 6, 12, 14, 18-19, 25, 27, 31]. It is in this 

context that we propose in this work, to prevent 

untimely breakdowns, reduce the duration of 

downtime necessary for maintenance and optimize 

the operating time of each organ by deciding to 

intervene just in time. We adopt a reliability 

approach based on the two-parameter Weibull 

distribution with a comparative study by a new 

modified Weibull distribution for the different 

calculations of the reliability indices, to optimize the 

reliability of the gas turbine and maintenance system 

in these industrial facilities. 

This is done with malfunctions analysis of the 

turbine systems with the selection of maintenance 

tasks, which leads to proposing justified elementary 

tasks to cover the significant failure modes and to 

develop the maintenance program for this machine. 

It has increased the operating intervals between 

scheduled shutdowns and minimized the failure risk 

of the investigated turbine. 

 

2. WEIBULL-BASED RELIABILITY 

DISTRIBUTION 

 

The variation and evolution of the failure rate of 

a device during its entire lifetime is characterized by 

a reliability distribution, corresponding to the 

probability of occurrence of these failures. Hence, 

the modeling of the reliability distributions is a 

crucial issue for the operational safety of industrial 

systems, to ensure an optimal compromise between 

the five zeros of optimal operation such as zero 

accidents, zero downtime, zero faults, zero 

maintenance, and zero emissions [2-4]. 

To achieve these objectives in terms of quality 

and availability, and a reliable operation with 

guaranteed operating safety at reasonable costs, the 

Weibull reliability distribution is proposed. First, a 

reliability analysis using the two-parameter Weibull 

distribution will be done, then this latter will be 

compared to a modified Weibull distribution, using 

real data from MS5002C gas turbine. The proposed 

reliability approach makes it possible to model the 

damage effects to predict the operating performance 

of the examined gas turbine. As well as providing 

comparable results in terms of validity against the 

Weibull two-parameter approach. This analysis then 

has the aim of increasing their reliability and using 

reliability indices to be able to carry out risk analyzes 

specific to this gas transport installation. 

 

2.1. Two-parameter Weibull distribution  

The Weibull-based reliability distribution, 

having parameters that make it possible to ensure a 

better representative of the phenomena of failure and 

degradation of the turbine studied. The Weibull 

distribution characterizes well the behavior of the 

product in the three phases of the life of a system, 

divided into three distinct periods; Period of infant 

mortality characterized by decreased failure rate, 

Normal period characterized by essentially constant 

failure rate and Aging period characterized by rapid 

increase in failure rate as a result of equipment 

degradation due to age or use, depending on the 

value of the shape parameter 𝛽, for the period of 

youth 𝛽 ≺ 1, period of useful life 𝛽 = 1 and for the 

period of wear or aging 𝛽 ≻ 1. The two-parameter 

Weibull distribution is characterized by its survival 

function, given by [3, 30]:  

𝑅(𝑡) = 𝑒
_(
𝑡

𝜂
)
𝛽

                                   (1) 
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 with 𝛽 is the shape parameter and 𝜂 is the scale 

parameter.  

And the probability density, given by [4, 35]: 

𝑓(𝑡) =
𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

𝑒
−(
𝑡

𝜂
)
𝛽

                  (2) 

With the failure rate, given by: 

𝜆(𝑡) =
𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

                      (3) 

The risk function ℎ(𝑡) is the conditional 

probability of functional equipment failure at instant 

(𝑡 + 𝛥𝑡), given by [5, 43] :  

ℎ(𝑡) = (
𝛽

𝜆
) (

𝑡𝑖

𝜆
)
𝛽−1

              (4) 

However, assessing the reliability of an 

equipment requires obtaining information on its 

components, which relates to failure events that 

occurred during the operation or testing of this 

equipment [17, 21, 29, 36-37, 44, 48]. In practice, for 

the turbine studied, this approach consists in 

observing for a certain operating time in the actual 

operating conditions of the gas turbine, in order to 

list all the information related to their failures. This 

is reliability data that requires the overall knowledge 

of turbine system and their operating conditions. 

 

2.2. Proposed modified weibull distribution 

The proposed model is the Weibull model with a 

variable shape parameter 𝛽, this shape parameter is 

proposed as a variable function over time, gradually 

increases to reach the maximum reliability, during 

the early life period, then begins an accelerated 

growth during the wear life period. Hence, the 

density function of the proposed model is given by:  

𝑓(𝑡) = (
𝑡

𝑑
)
𝛽(𝑡)

𝑒−
(
𝑡

𝑑
)
𝛽(𝑡)

(𝑙𝑜𝑔(
𝑡

𝑑
)(𝛽′(𝑡)) +

𝛽(𝑡)

𝑡
)     (5) 

Where 𝛽(𝑡) is the variable form parameter and 𝑑 

represents the scale parameter of the distribution. 

This function represents a family of densities, based 

on the Weibull model where its shape parameter 𝛽 is 

replaced by a known mathematical function 

proposed by Farazdaghi and Harris, given by:  

𝛽(𝑡) =
1

𝑎+𝑏(𝑡/𝑐)𝑑
                       (6) 

And the distribution function of the model will 

be determined by the following form: 

𝐹(𝑡) = 1 − 𝑒−
(
𝑡

𝑑
)
𝛽(𝑡)

                 (7) 

In this case and with the use of the Farazdaghi-

Harris model for the nonlinear fit of reliability data, 

the probability density model becomes:  

𝑓(𝑡) = (
𝑡

𝑑
)

1

𝑎+𝑏(𝑡/𝑑)𝑐
𝑒
−(

𝑡

𝑑
)

1
𝑎+𝑏(𝑡/𝑑)𝑐

(
1

𝑡(𝑎+𝑏(
𝑡

𝑑
)
𝑐
)
−
𝑏𝑐(

𝑡

𝑑
)
𝑐
𝑙𝑜𝑔(

𝑡

𝑑
)

𝑡(𝑎+𝑏(
𝑡

𝑑
)
𝑐
)
2 ) 

(8) 

with  𝛽′(𝑡) = −
𝑏𝑐(

𝑡

𝑑
)
𝑐

𝑡(𝑎+𝑏(
𝑡

𝑑
)
𝑐
)
2.       

To determine the given values taken for the 

turbine reliability analysis under consideration, the 

cumulative probability yields the following 

distribution function: 

𝐹(𝑡) = 1 − 𝑒−
(
𝑡

𝑑
)
(

1
𝑎+𝑏(𝑡/𝑑)𝑐

)

                       (9) 

Hence, the survival function is given by:  

𝑆(𝑡) = 𝑒−
(
𝑡

𝑑
)
(

1
𝑎+𝑏(𝑡/𝑑)𝑐

)

                         (10) 

And finally the risk function is given by:  

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= (

𝑡

𝑑
)

1
𝑎+𝑏(𝑡/𝑑)𝑐 1

𝑡 (𝑎 + 𝑏 (
𝑡
𝑑
)
𝑐

)
 

(1 −
𝑏𝑐(

𝑡

𝑑
)
𝑐
𝑙𝑜𝑔(

𝑡

𝑑
)

(𝑎+𝑏(
𝑡

𝑑
)
𝑐
)
)            (11) 

This proposed modified Weibull distribution will 

be used as a result of this work, to model failure 

behavior, the next failure of a gas turbine and to plan 

their maintenance tasks. 

 

3. STUDIED GAS TURBINE  

 

The Hassi R'mel natural gas compression center, 

installed in the southern Algeria, uses MS5002C 

type gas turbines. This gas compression center is part 

of a group of stations and gas pipeline centers 

responsible for the activity of transporting gas 

through pipelines, for the transport, storage and 

delivery of liquid and gaseous hydrocarbons. The 

objective of this gas compression center is to set up 

high gas compression capacities, in order to 

accompany the natural drop in the pressure of the 

Hassi R'mel deposit, consists of increasing the gas 

pressure by means of turbochargers in order to 

maintain the nominal operating pressures of the 

Hassi R'mel treatment facilities. With a production 

capacity of 2,400 billion cubic meters of natural gas, 

this Hassi R'mel deposit is classified as the largest 

deposit in Africa.  

However, the gas turbine studied in this work is 

an MS5002C model. Its specifications and 

characteristics are given in Table 1. It is composed 

of three elements, as it is mounted in Figures 1 and 

2. An axial compressor, which plays the role of 

compressing the ambient air to a pressure between 

10 and 30 bars approx. A combustion chamber, into 

which gaseous or liquid fuel is injected under 

pressure. A compressed air burner, with a strong 

excess of air to limit the temperature of the exhaust 

gases and the turbine itself, in which the gases that 

leave the combustion chamber are expanded. 

The MS 5002C turbine is implemented for the 

two-shaft drive of an axial centrifugal compressor in 

a single cycle, using a Mark V SPEEDTRONIC 

control system, for the protection of this machine 

against over speed, overheating, vibration and flame 

detection. The portion of a mechanically driven gas 

turbine is the part where fuel oil and air are used to 

produce power on the shaft. This turbine has two 

mechanically independent turbine wheels. The high 

pressure first stage turbine wheel, drives the rotor of 

the air compressor, of the sixteen-stage axial type, 

and the shaft driving the accessories; Lubrication  
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Fig. 1. Functional diagram of a gas turbine with two shafts 

 
Fig. 2. Examined gas turbine MS5002C twin-shaft type 

Table 1. Gas turbine MS5002C characteristics 

Gas turbine model 

MS5002C 
Specifications Turbine section Specifications 

Power 28.340 MW Number of stage 2 

Efficiency 28.8% - 29.2% Shaft engine Twin 

Heat rate 12.467 kJ/kWh Joint plane Horizontal 

Exhaust temperature 517 °C Bearing assembly 04 bearings 

Exhaust mass flow 124.3 kg/s Lubrication Type Under pressure 

LP shaft speed 4900 rpm HP shaft speed 5100 rpm 

Combustion section Specifications Compressor section Specifications 

Number of combustion 

chambers  
12 with reverse flow Number of stage 16 

Chambers configuration 
Concentric around the 

compressor 
Flow type axial Heavy series 

Spark plugs  
2 types of self-retracting 

spring injection electrode 
Joint plane horizontal flange 

Flame detector  4 ultraviolet type Type of guide vanes at the inlet Variable 
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and hydraulic pumps. The impeller of the second 

stage turbine, or low pressure stage, drives the load 

which is a centrifugal compressor. The two impellers 

of the turbine are not linked to allow them to rotate 

at different speeds to adapt to variations in load. The 

use of two separate turbine wheels allows the two 

shafts to rotate at different speeds to meet the varying 

load requirements of the centrifugal compressor 

while allowing the high pressure gas generator to 

operate at the rated speed of the axial compressor. 

This MS 5002C gas turbine is composed of the 

suction or admission side, the combustion part and 

the exhaust part with isentropic expansion in the high 

pressure HP turbine wheels and in the low pressure 

LP turbine. 

So this gas turbine extracts air from the 

surrounding environment at a higher pressure, it 

increases the energy level of the compressed air by 

adding and burning the fuel in a combustion 

chamber. This machine conveys air at high pressure 

and temperature to the turbine section, which 

converts thermal energy into mechanical energy to 

rotate the shaft, this serves on the one hand to supply 

the useful energy to the machine pipe coupled with 

the machine by means of a coupling and on the other 

side to provide the energy necessary for 

compression, which takes place in a compressor 

connected directly to the turbine section. 

Indeed, the reliability analysis is an essential 

phase for the operational safety analysis, for quality 

and for decision support in maintenance. The 

following section presents the MS5002C turbine 

reliability data processing and analysis phase 

examined. This lies in taking into account all the 

information related to the failures of this machine, 

during an observation period to represent their useful 

life and degradations. This failure rate-based 

analysis makes it possible to explain a phenomenon 

of degradation of the turbine components examined 

as best as possible and makes it possible to formulate 

hypotheses for the maintenance actions to be 

programmed for this rotating machine. 

 

3.1. Reliability data of the examined MS5002C 

turbine  

To meet the performance, safety and availability 

objectives of gas turbine processes, they are 

associated with a reliability and availability 

improvement system that serves to detect any 

deviation of behavior from the desired behavior and 

even in certain situations. reconfigure the operation 

of the system. These systems use modern data 

acquisition and processing technologies, as shown in 

Figure 3, for improved availability and operating 

quality of this type of machine. 

Therefore, the analysis of operating data is 

essential for the development of turbine reliability 

models. For this, a series of operating history data 

from the examined MS5002C gas turbine, presented 

in Table 2, are used for the analysis and 

determination of the various reliability indices of this 

machine. Using Sturge's rule for a sample of size N 

= 246, to first perform a division into classes of the 

turbine data, as follows: 

𝐾 ≥ 1 +
10

3
𝑙𝑜𝑔 𝑁                             (12) 

 

 
Fig. 3. Gas compressor station data acquisition and processing system 
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Table 2. Operating history data for the examined 

MS5002C gas turbine  

N° Classes N f F Fa 

1 [0 ,82[ 132 0,545454545 0,545454545 0.5433884 

2 [82 ,164[ 55 0,227272727 0,772727273 0.7706612 

3 [164 ,246[ 23 0,095041322 0,867768595 0.8657025 

4 [246,328[ 14 0,05785124 0,925619835 0.9235537 

5 [328 ,418[ 7 0,02892562 0,954545455 0.9524793 

6 [418 ,492[ 3 0,012396694 0,966942149 0.9648760 

7 [492 ,574[ 5 0,020661157 0,987603306 0.9855372 

8 [574,656[ 1 0,004132231 0,991735537 0.9896694 

9 [656 ,738[ 2 0,008264463 1 0.9979339 

 

3.2. Graphical reliability method  

To address the problem of determining if a 

dataset can be adequately modeled by reliability 

distributions, by observing a class of data, especially 

through data from failures in that class of data. This 

makes it possible to build a database which 

contributes to the various maintenance interventions 

of this machine, to correctly model this class of 

turbine data examined, the graphical plot of Weibull 

paper WPP based on a data set is made by the 

graphical method. This is for the two-parameter 

Weibull model, as shown in Figure 4, as well as for 

the proposed modified Weibull model, as shown in 

Figure 5. 

The graphical plot of Weibull paper WPP 

consists in plotting the variable y with respect to the 

variable x, where these are related by the Weibull 

transformation, as follows: 

{
𝑦 = 𝑙𝑛[− 𝑙𝑛(�̄�(𝑡))]

𝑥 = 𝑙𝑛(𝑡)
 

⇒ {
𝑦 = 𝛽𝑥 − 𝛽 𝑙𝑜𝑔(𝛼)

𝑥 = 𝑙𝑜𝑔(𝑡)
                (13) 

It is a linear form 𝑦 = 𝑎𝑥 + 𝑏, which implies that 

𝑦 = 0.8608𝑥 − 08608 𝑙𝑜𝑔(109.5). 
For the modified Weibull distribution, the plot of 

the variable 𝑦 against the variable  is given by the 

following form :  

{
𝑦 = 𝑙𝑜𝑔(𝛼) + 𝛽𝑥 + 𝜆𝑒𝑥

𝑥 = 𝑙𝑜𝑔(𝑡)
 

⇒ 𝑦 = 𝑎 + 𝑏𝑥 + 𝜆 𝑙𝑜𝑔( 𝑥)                  (14) 

It is a nonlinear form, which implies that 𝑦 =
𝑙𝑜𝑔( 0.03088) + 0.734𝑥 + 0.00042 𝑙𝑜𝑔(𝑥). 

 

 
Fig. 4. Graphical plot of Weibull paper WPP for the examined turbine reliability  

model based on two-parameter Weibull 

x
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Fig. 5. Graphical plot of Weibull paper WPP for the examined turbine reliability model based on modified Weibull 

 
Fig. 6. Comparison of graphical plots of Weibull WPP paper for the examined turbine reliability model  

based on two-parameter Weibull and modified Weibull 
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This graphing technique is used to determine 

whether a dataset comes from a population, 

examined gas turbine failure data class, which would 

logically be fitted by a Weibull distribution. 

Subsequently, several statistical tests will be carried 

out to confirm the choice of the reliability 

distribution for the examined turbine case.  

 

4. STATISTICAL ESTIMATE OF 

RELIABILITY INDEX  

 

Reliability measures are determined by the 

probability of survival of a system, can be applied 

when reliability distributions are well-chosen, to 

characterize measures composed of various failing 

elements in the system. In this sense, statistical 

estimates based on the maximum likelihood, the 

method of moments, the non-parametric regression 

method of the percentiles, and the method of the 

least-squares will be performed to determine the best 

suitable distribution for the turbine system under 

consideration. 

 

4.1. Maximum likelihood estimation  

The lifespan of a system can be modeled by a 

two-parameter Weibull distribution, using complete 

data observed during system operation. For the 

turbine case studied, the likelihood seems to contain 

all the information provided by the observations 

during their operation, based on the good asymptotic 

properties of this estimator. Hence, the likelihood 

algorithm is given by:  

𝐿 =∏𝑓(𝑥𝑖 , 𝜆, 𝛽)

𝑁

𝑖=1

  

         
𝜕 𝑙𝑛(𝐿)

𝜕𝜆
= 0,    

𝜕 𝑙𝑛(𝐿)

𝜕𝛽
= 0          (15) 

With 𝐶 =
𝑁!

∐ 𝑛𝑖!
𝑁𝑅
𝑖=1

  and   𝑃(𝑥𝑖−1 ≺ 𝑋 ≤ 𝑥𝑖) =

𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1) 

⇒ 𝑃(𝑥𝑖−1 ≺ 𝑋 ≤ 𝑥𝑖) = �̄�(𝑥𝑖) − �̄�(𝑥𝑖−1) .Then the 

maximum likelihood estimator of a random variable 

𝑋 governed by a probability 𝑃 is determined by the 

set of absolutely continuous probability measures 𝐿 

with respect to a failure measure 𝜆 is given by: 

𝐿(𝑥1, 𝑥2, 𝑥3, . . . , 𝛽, 𝜆) = 𝐶∏[�̄�(𝑥𝑖) − �̄�(𝑥𝑖−1)]
𝑛𝑖

𝑁𝑅

𝑖=1

 

                            =  𝐶∏[𝑒
[−(

𝑥𝑖
𝜆
)
𝛽
]
− 𝑒

[−(
𝑥𝑖−1
𝜆
)
𝛽
]
]

𝑛𝑖𝑁𝑅

𝑖=1

 

⇒ 𝑙𝑛[𝐿(𝑥1, 𝑥2, 𝑥3, . . . , 𝛽, 𝜆)] = 𝑙𝑛 𝐶 +

∑ 𝑛𝑖
𝑁𝑅
𝑖=1 𝑙𝑛 [𝑒

[−(
𝑥𝑖
𝜆
)
𝛽
]
− 𝑒

[−(
𝑥𝑖−1
𝜆
)
𝛽
]
]                        (16) 

With   𝐴𝑖(𝜃) = {

0            𝑖𝑓 𝑖 = 0              

𝑒
[−(

𝑥𝑖
𝜆
)
𝛽
]
    𝑖𝑓 𝑖 = 1, . . . , 𝑁𝑅  

0      𝑖𝑓 𝑖 = 𝑁𝑅 + 1             

.   

We get:  

𝐿(𝑥1, 𝑥2, 𝑥3, . . . , 𝛽, 𝜆) = 𝐶 ∏ [𝑃(𝑥𝑖−1 ≺ 𝑋 ≤
𝑁𝑅
𝑖=1

𝑥𝑖)]
𝑛𝑖                                        (17) 

 partial derivative of logarithms of equation (16), 

with respect to 𝜆 gives the estimation equations of 

the following form : 
𝜕 𝑙𝑛(𝐿)

𝜕𝜆
=

−∑ 𝑛𝑖
𝑁𝑅
𝑖=1

𝐴𝑖−1[(
𝑥𝑖−1
𝜆
)
𝛽
𝑙𝑛(

𝑥𝑖−1
𝜆
)−𝐴𝑖[(

𝑥𝑖
𝜆
)
𝛽
𝑙𝑛(

𝑥𝑖
𝜆
)]]

𝐴𝑖−1−𝐴𝑖
               

      (18) 

This makes it possible to have the new numerical 

estimation results of �̂� = 0.8694809 and �̂� =
107.6626769. This maximum likelihood estimator 

gives good results, as it is shown in Figure 7, despite 

the limitations of the precision of the measurements, 

according to which, all the information on the 

evolution of failures is contained in the likelihood 

function, during the turbine observation period.

 

 
Fig. 7. Evolution of two-parameter Weibull-based turbine failures with maximum likelihood estimator 
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For the case of the modified Weibull distribution 

proposed in this work, the likelihood function is easy 

to determine, for the complete data of the turbine, 

this function is given by: 

𝐿 =∏𝑓(𝑥𝑖 , 𝑎, 𝑏, 𝜆)

𝑁

𝑖=1

  

         
𝜕 𝑙𝑛(𝐿)

𝜕𝑎
= 0,    

𝜕 𝑙𝑛(𝐿)

𝜕𝑏
= 0,  

𝜕 𝑙𝑛(𝐿)

𝜕𝜆
= 0 (19) 

Where,  

𝐿(𝑥1, 𝑥2, 𝑥3, . . . , 𝑎, 𝑏, 𝜆) 

= 𝐶∏[𝑃(𝑥𝑖−1 ≺ 𝑋 ≤ 𝑥𝑖)]
𝑛𝑖

𝑁𝑅

𝑖=1

 

=  𝐶∏[�̄�(𝑥𝑖) − �̄�(𝑥𝑖−1)]
𝑛𝑖

𝑁𝑅

𝑖=1

 

=  𝐶 ∏ [𝑒[−𝑎𝑡
𝑏𝑒(𝜆𝑥𝑖−1)] − 𝑒[−𝑎𝑡

𝑏𝑒(𝜆𝑥𝑖)]]
𝑛𝑖

𝑁𝑅
𝑖=1   

We can get :  

𝑙𝑛[𝐿(𝑥1, 𝑥2, 𝑥3, . . . , 𝑎, 𝑏, 𝜆)] 

= 𝑙𝑛 𝐶 + ∑ 𝑛𝑖 [𝑒
[−𝑎𝑡𝑏𝑒(𝜆𝑥𝑖−1)] −𝑁𝑅

𝑖=1

𝑒[−𝑎𝑡
𝑏𝑒(𝜆𝑥𝑖)]]With 𝐴𝑖(𝜃) =

{

0            𝑖𝑓 𝑖 = 0              

𝑒[−𝑎𝑡
𝑏𝑒(𝜆𝑥𝑖)]   𝑖𝑓 𝑖 = 1, . . . , 𝑁𝑅  

0      𝑖𝑓 𝑖 = 𝑁𝑅 + 1             

.   

However, the results obtained for the proposed 

failure model of the modified Weibull distribution, 

shown in Figure 8, give estimated values �̂� =

0.0254027, �̂� = 0.7754443 and �̂� =
0.000397175 with perfect fit, obtained with respect 

to the partial derivative, given by : 

𝜕 𝑙𝑛(𝐿)

𝜕𝑎
= −∑𝑛𝑖

𝑁𝑅

𝑖=1

 

𝐴𝑖−1[(𝑥𝑖−1)
𝑏𝑒(𝜆𝑥𝑖−1)] − 𝐴𝑖[(𝑥𝑖)

𝑏𝑒(𝜆𝑥1)]

𝐴𝑖−1 − 𝐴𝑖
 

𝜕 𝑙𝑛(𝐿)

𝜕𝑏
= −∑𝑛𝑖

𝑁𝑅

𝑖=1

 

𝐴𝑖−1[𝑎(𝑥𝑖−1)
𝑏 𝑙𝑛(𝑥𝑖−1) 𝑒

(𝜆𝑥𝑖−1)] − 𝐴𝑖[𝑎(𝑥𝑖)
𝑏 𝑙𝑛(𝑥𝑖) 𝑒

(𝜆𝑥𝑖)]

𝐴𝑖−1 − 𝐴𝑖
 

𝜕 𝑙𝑛(𝐿)

𝜕𝜆
=∑𝑛𝑖

𝑁𝑅

𝑖=1

 

𝐴𝑖−1[−𝑎(𝑥𝑖−1)
𝑏+1𝑒(𝜆𝑥𝑖−1)]−𝐴𝑖[−𝑎(𝑥𝑖)

𝑏+1𝑒(𝜆𝑥𝑖)]

𝐴𝑖−1−𝐴𝑖
 

(20) 
4.2. Estimation based on the method of moments  

In the case of the two-parameter Weibull 

distribution, using an estimator based on the method 

of moments, in which the failure variable 

expectation 𝜆 is dependent, for each observation 𝑡𝑖 is 

a draw from an expectation distribution law 𝑚𝑘, 

which is an unbiased estimator for the time 𝐾𝑡ℎ given 

by: 

�̂�𝑘 = ∑ 𝑡𝑖
𝑘𝑁

𝑖=1                         (21) 

For the Weibull distribution case, the moment  

𝐾𝑡ℎ is given as follows: 

𝜇𝑘 = (
1

𝜆𝛽
)

𝑘

−𝛽
𝛤 (1 +

𝑘

𝛽
)              (22) 

 

 
Fig. 8. Evolution of modified Weibull-based turbine failures with maximum likelihood estimator 
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Hence   means the gamma function, determined 

as follows: 

𝛤(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑠𝑑𝑥, s ≻ 0
∞

0

 

𝑚1 = 𝜇1 = (
1

𝜆
)

1
𝛽
𝛤 (1 +

1

𝛽
) 

𝑚2 = 𝜇2 + 𝜇1
2 = 𝜎2 +𝑚1

2 

= (
1

𝜆
)

2
𝛽
[𝛤 (1 +

2

𝛽
) + 𝛤 (1 +

1

𝛽
)
2

] 

⇒ 𝜎2 = 𝑚2 −𝑚1
2 

= (
1

𝜆
)

2
𝛽
[𝛤 (1 +

2

𝛽
) + 𝛤 (1 +

1

𝛽
)
2

] 

�̂�2

�̂�2
=

(
1
𝜆
)

2
𝛽
[𝛤 (1 +

2
𝛽
) + 𝛤 (1 +

1
𝛽
)
2

]

(
1
𝜆
)

2
𝛽
𝛤2 (1 +

1
𝛽
)

 

⇒ 𝐶𝑉 = √
�̂�2

�̂�2
 

For the turbine data examined, Figure 9 shows 

the evolution of failures of this Weibull-based 

machine with two parameters with estimator of the 

method of moments, with the estimate �̂� =

0.9625049 and �̂� = 120.1602,  given by : 

𝜎 = √(∑ 𝑝𝑖𝑥𝑖
2𝑁

𝑖=1 ) − �̄�2               (23) 

with �̄� = ∑ 𝑝𝑖𝑥𝑖
𝑁
𝑖=1  and 𝐶𝑉 =

𝜎

�̄�
. 

For the modified Weibull distribution, it is not 

possible to use the method of moments to estimate 

the parameters of the distribution because the 

expressions of the moments are analytically 

insolvent.  

 

4.3. Estimate based on the nonparametric 

percentile regression method  

For the cumulative failure probability, the 

estimate based on the nonparametric regression 

method of percentiles of a population of reliability 

data 0 ≺ 𝑃 ≺ 1, using the two-parameter Weibull 

model of a two-parameter Weibull population is  

100𝑃%  of the percentile 𝑥𝑝, is given by: 

𝑥𝑝 = 𝜆 = [− 𝑙𝑛(1 − 𝑃)]
1 𝛽⁄                (24) 

For a sample size 𝑛, the 100𝑃% percentile of 𝑥𝑝 

with: 

�̂�𝑝 = {
𝑥𝑛𝑝:𝑛  𝑖𝑓 𝑛𝑝 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡 𝑒 𝑔𝑒𝑟

𝑥[𝑛 𝑝] + 1: 𝑛   𝑖𝑓 𝑛𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑡 𝑒 𝑔𝑒𝑟
. 

We get: 

𝑙𝑛[− 𝑙𝑛(1 − 𝑃)] = 𝛽(𝑙𝑛 𝑥𝑝 − 𝑙𝑛 𝜆)   (25) 

For two real numbers 𝑃1 and 𝑃2 such that 0 ≺
𝑃1 ≺ 𝑃2 ≺ 1, we have: 

{
𝑙𝑛[− 𝑙𝑛(1 − 𝑃1)] = 𝛽(𝑙𝑛 𝑥𝑝1 − 𝑙𝑛 𝜆)

𝑙𝑛[− 𝑙𝑛(1 − 𝑃2)] = 𝛽(𝑙𝑛 𝑥𝑝2 − 𝑙𝑛 𝜆)
 

⇒ 𝛽 =
𝑙𝑛[− 𝑙𝑛(1 − 𝑃1)] − 𝑙𝑛[− 𝑙𝑛(1 − 𝑃2)]

𝑙𝑛 𝑥𝑝1 − 𝑙𝑛 𝑥𝑝2
 

Consequently, a percentile estimator of 𝛽, based 

on two ordered sample values, is given by: 

�̂� =
𝑙𝑛[− 𝑙𝑛(1−𝑃1)]−𝑙𝑛[− 𝑙𝑛(1−𝑃2)]

𝑙𝑛 �̂�𝑝1−𝑙𝑛 �̂�𝑝2
    (26) 

Both probability 𝑃1 and 𝑃2 are selected to 

minimize the variance of �̂�, where 17th and 97th 

percentiles of the turbine failure data sample studied, 

is determined by: 

𝜆 = 𝑒(𝑤 𝑙𝑛 𝑦1+(1−𝑤) 𝑙𝑛 𝑦2)                        (27) 

with 𝑤 = 1 −
𝑙𝑛[− 𝑙𝑛(1−𝑃1)]

𝑙𝑛[− 𝑙𝑛(1−𝑃1)]−𝑙𝑛[− 𝑙𝑛(1−𝑃2)]
.  

The variance of failures �̂� is determined after 

selecting two probability 𝑃1 and 𝑃2 at the 40th and 

82nd percentiles of the minimized sample of turbine 

failure data studied, the results obtained for this 

percentile is shown in Figure 10, allows to estimate 

�̂� = 100.0366 for the probabilities 𝑃1 =
0.5433168and 𝑃2 = 0.9872112. And for the 

estimated value �̂� = 0.7809538 for the probabilities 

𝑃1 = 0.8626238 and 𝑃2 = 0.9773102. 

For the evolution of turbine failures with 

nonparametric regression method estimator of the 

modified Weibull probability 100𝑃% using 𝑥𝑝 

percentiles of the data population studied is given by: 

                  (28) 

with  𝑏 𝑙𝑛 𝑥𝑝𝑖 + 𝜆𝑥𝑝𝑖 + 𝑙𝑛 𝑎 

= 𝑙𝑛[− 𝑙𝑛(1 − 𝑃𝑖)] , 𝑖 = 1,2                      
 

 
Fig. 9. Evolution of Weibull-based turbine failures with two parameters with estimator of the method of moments 

( )px
ateeP


−−= 1
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Fig. 10. Evolution of Weibull-based turbine failures with two parameters with estimator  

of the nonparametric regression method of the percentiles 

 

By solving this equation, we determine the 

parameters 𝑏, as follows: 

𝑏 =
𝐾12−𝐾13

𝑍12−𝑍13
                     (29) 

with 𝐾12 =
𝑙𝑛 𝑥𝑝1−𝑙𝑛𝑥𝑝2
𝑥𝑝1−𝑥𝑝2

, 𝐾13 =
𝑙𝑛 𝑥𝑝1−𝑙𝑛𝑥𝑝3
𝑥𝑝1−𝑥𝑝3

,  

𝑍12 =
𝑍1−𝑍2

𝑥𝑝1−𝑥𝑝2
, 𝑍13 =

𝑍1−𝑍3

𝑥𝑝1−𝑥𝑝3
. 

To determine the parameters 𝜆, as follows:  

𝑍𝑖 = 𝑙𝑛[− 𝑙𝑛(1 − 𝑃𝑖)] 
𝜆 = 𝑍13 − 𝑏𝐾13                     (30) 

And to determine the parameters 𝑎, as follows: 

𝑎 = 𝑒
(𝑏 𝑙𝑛 𝑥𝑝𝑖+𝜆𝑥𝑝𝑖−𝑍1

)
            (31) 

After the selection of two probability, 𝑃1, 𝑃2 and 

𝑃3 percentiles of the minimized sample of turbine 

failure data studied, the results obtained for this 

percentile is shown in Figure 11, allows to estimate, 

�̂� = 0.01467593, �̂� = 0.9107816 and �̂� =
−0.0004348491for the probabilities 𝑃1 =
0.5433168, 𝑃2 = 0.9872112and 𝑃3 = 0.8626238. 

 

4.4. Estimation based on the least squares 

method  

For the Weibull two-parameter reliability model, 

the least-squares method compares actual turbine 

operating data with measurement errors on that data 

and minimizes the impact of these experimental 

errors. With linearization, we have: 

𝑦𝑖 = 𝐹(𝑥𝑖) = 1 − 𝑒
[−(

𝑥𝑖
𝜆
)
𝛽
]
 

1 − 𝑦𝑖 = 𝑒
[−(

𝑥𝑖
𝜆
)
𝛽
]
⇒ 𝑙𝑛(1 − 𝑦𝑖) = −(

𝑥𝑖

𝜆
)
𝛽

 (32) 

with 𝑌𝑖 = 𝑙𝑛[− 𝑙𝑛(1 − 𝑦𝑖)], 𝑋𝑖 = 𝑙𝑛 𝑥𝑖, 𝑎 = 𝛽, 

𝑏 = −𝛽 𝑙𝑛 𝜆and 𝑌𝑖 = 𝑎𝑋𝑖 + 𝑏 + 𝜀. 
To minimize the sum of the error squares, it is 

necessary to solve the conditions 
𝜕𝑆𝑆𝐸

𝜕𝑎
= 0 and 

𝜕𝑆𝑆𝐸

𝜕𝑏
= 0, for the sum of the error squares which is 

given by: 

𝑆𝑆𝐸 = ∑ (𝑌𝑖 − �̂�𝑖)
2𝑁

𝑖=1 = ∑ (𝑌𝑖 − (𝑏 + 𝑎𝑋𝑖))
2𝑁

𝑖=1  

(33) 

For that we have:  

𝜕𝑆𝑆𝐸

𝜕𝑎
=∑2(𝑌𝑖 − (𝑏 + 𝑎𝑋𝑖))(−𝑋𝑖) = 0

𝑁

𝑖=1

 

𝜕𝑆𝑆𝐸

𝜕𝑏
=∑2(𝑌𝑖 − (𝑏 + 𝑎𝑋𝑖)) = 0

𝑁

𝑖=1

 

⇒∑𝑌𝑖 −

𝑁

𝑖=1

∑𝑏

𝑁

𝑖=1

− 𝑎∑𝑋𝑖

𝑁

𝑖=1

= 0 

1

𝑁
∑ 𝑌𝑖 −
𝑁
𝑖=1 𝑎

1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 = 𝑏 ⇒ 𝑏 = �̄� − 𝑎�̄� (34) 

By other way we have: 

∑𝑌𝑖𝑋𝑖 + 𝑏

𝑁

𝑖=1

∑𝑋𝑖

𝑁

𝑖=1

+ 𝑎∑𝑋𝑖
2

𝑁

𝑖=1

= 0 

⇒ 𝑎 =
−∑ 𝑌𝑖𝑋𝑖+

𝑁
𝑖=1 ∑ 𝑋𝑖

𝑁
𝑖=1 �̄�

∑ 𝑋𝑖�̄�−
𝑁
𝑖=1 ∑ 𝑋𝑖

2𝑁
𝑖=1

                      (35) 

This least squares estimator makes it possible to 

develop the two-parameter Weibull-based 

approximation model, shown in Figure 12, with the 

estimates of the variables of �̂� = 104.6549 and �̂� =
0.7666161. 

To analyze the goodness of fit of Weibull-based 

turbine failure prediction modified with the least 

squares estimator, with the use of decomposing the 

sums of squares of the deviations from the mean of 

each value of 𝑋 corresponds the estimated value of  

𝑌, in the following form: 

𝑦𝑖 = 𝐹(𝑥𝑖) = 1 − 𝑒
(−𝑎𝑡𝑒(𝜆𝑥𝑖)) 

1 − 𝑦𝑖 = 𝑒
(−𝑎𝑡𝑒(𝜆𝑥𝑖)) ⇒ − 𝑙𝑛(1 − 𝑦𝑖) = 𝑎𝑥𝑖

𝑏𝑒(𝜆𝑥𝑖) 
𝑌𝑖 = 𝑒0 + 𝑒1𝑋1𝑖 + 𝑒2𝑋2𝑖 + 𝜀𝑖                                      

(36) 

with 𝑌 =

(

 
 

𝑙𝑛[− 𝑙𝑛(1 − 𝑦1)]

𝑛[− 𝑙𝑛(1 − 𝑦2)]
⋮
⋮

𝑛[− 𝑙𝑛(1 − 𝑦𝑛)])

 
 

, 𝑒 (

𝑒0
𝑒1
𝑒2
), 𝜀 = (

𝜀1
𝜀2
⋮
𝜀𝑛

),  

𝑋
𝑛×3

= (
1 𝑋11 𝑋22
⋮ ⋮ ⋮
1 𝑋1𝑛 𝑋2𝑛

), 𝑋1𝑖 = 𝑙𝑛(𝑥𝑖) and 𝑋2𝑖 = 𝑥𝑖 . 
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The least squares estimator is given by: 

�̂� = 𝑆𝑋 with 𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇         (37) 

This least squares estimator makes it possible to 

develop the approximation model, shown in Figure 

13, with good quality estimates of the reliability 

variables affected by random errors, with estimation 

of �̂� = 0.01551676, �̂� = 0.901499 and �̂� =
−0.0004526382. 

The synthesis of the different reliability analyzes 

for the goodness of fit of gas turbine failure  

 

prediction examined, using the two-parameter 

Weibull model and the modified Weibull model with 

the different estimators used are shown in Tables 4 

and 5. Where Table 3 shows the results obtained with 

reliability modeling errors and Table 4 presents the 

results obtained from the estimated reliability 

parameters of gas turbine MS5002C. 
 

 

 
Fig. 11. Evolution of modified Weibull-based turbine failures with estimator  

of the non-parametric regression method of the percentiles 

 
Fig. 12. Evolution of two-parameter Weibull-based turbine failures with least squares estimator 

 

 
Fig. 13. Evolution of modified Weibull-based turbine failures with least squares estimator 
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Table 3. Obtained results of MS5002C gas turbine reliability modeling errors 

 

Mean Squared 

Error 

Two-parameter 

Weibull 

Mean Squared 

Error 

Modified 

Weibull 

Root Mean Square 

Error 

Two-parameter 

Weibull 

Root Mean Square 

Error 

Modified Weibull 

Maximum Likelihood 

Estimator (MLE) 
6.400752e-06 7.046527e-09 0.002529971 8.394359e-05 

Moments Method Estimator 

(MME) 
6.820e-05 - 0.008258534 - 

Percentiles Regression 0.0005399404 2.414e-07 0.02323662 0.000491399 

Least Squares Estimator 

(LSE) 
5.067e-06 2.402e-07 0.002251026 0.0004901594 

 

Table 4. Obtained results from estimated reliability parameters of MS5002C gas turbine 

 Two-parameter Weibull Modified Weibull 


 

  
a b   

Maximum Likelihood 

Estimator (MLE) 

0.8694809 107.6626769 0.0254027 0.7754443 0.000397175 

Moments Method Estimator 

(MME) 

0.9625049 120.1602 - - - 

Percentiles Regression 0.7809538 100.0366 0.01467593 0.9107816 -0.0004348491 

Least Squares Estimator (LSE) 0.7666161 104.6549 0.01551676 0.901499 -0.0004526382 

After the operation of the turbine reliability data 

examined, with estimation of the turbine operating 

data, based on the two-parameter Weibull model and 

the proposed modified Weibull distribution model, 

from recorded failure data on this machine, which 

increases over time. For the purpose of developing a 

decision support strategy for the maintenance of this 

turbine, to increase their operating profitability. 

 

5.MAINTENANCE OF MS5002C GAS 

TURBINE BASED ON THEIR 

RELIABILITY RATINGS 

 

The operation of a gas turbine, must include a 

planned program of periodic inspections and, if 

necessary, the replacement of defective parts, in 

order to ensure maximum utilization and reliability 

of the turbine. Indeed, in the case of the MS5002C 

gas turbine, after the various reliability calculations 

of this machine, inspections can be programmed on 

the combustion system after 12,000 working hours 

and 800 starting sequences, the hot part 24,000 hours 

of operation. work and 1,200 starting sequences with 

a general overhaul for 48,000 working hours and 

2,400 starting sequences. Operating data must be 

acquired in all transient phases (start, stop) and in 

steady state condition during normal machine 

operation. This operation is used to have reference 

values on consumption, performance, for proper 

programming of maintenance actions. This will 

allow a better assessment of any change in the 

operation of the gas turbine during its life and will 

help to discover the causes of possible faults and to 

choose the appropriate solutions. 

For this, the three turbine parts; Combustion 

system, hot gas stream and turbine section have been 

inspected, as shown in Table 5. For the inspection of 

the combustion system, to check the condition of the 

burner elements, the combustion chamber (jacket, 

bonnet, outlet socket), interconnecting tubes, spark 

plugs and flame detectors. The purpose of the 

inspection of the hot gas exhaust part is to examine 

the parts of the turbine that are most subjected to 

stress by the high temperatures of the combustion 

gas system, this inspection essentially includes the 

guidelines of all the turbine stages, the rotor blades 

and the outer protection rings. And the general 

overhaul of the turbine aims to inspect and examine 

all interior parts of the rotor and stator, from the inlet 

of the filter chamber to the exhaust system, including 

the load reducer. and the driven machine. 

The development of a schedule for inspections of 

the MS5002C gas turbine is for the purpose of 

making a maintenance plan, which will reduce the 

downtime and increase the uptime of this turbine. 

For the combustion system, Figure 14 shows the 

inspection of the flame tubes made during the 

maintenance process and Figure 15 shows the 

inspection of the injector tanks, according to the 

signs of failure obtained. As well as a general 

overhaul is made on the gas turbine MS5002C, for 

the compressor section and the turbine section, as 

shown in Figure 16 up to Figure 19, according to the 

different turbine technical specifications and 

reliability indices. obtained. Figure 16 shows a 

general overhaul of a high pressure HP turbine, 

Figure 17 shows a general overhaul of the rotor, 

Figure 18 shows a general overhaul of the 

compressor and Figure 19 shows a general overhaul 

of the turbine section to observe the different rotor 

and stator parts of the machine. 
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Table 5. Maintenance inspections of the MS5002C gas turbine  

Section Element Object of the inspection Potential actions 
In

sp
ec

ti
o

n
 o

f 
th

e 

co
m

b
u

st
io

n
 s

y
st

em
 Combustion jacket 

Combustion cap  

Burner  

Transition piece 

Interconnection tubes 

Purge valve  

Check valves  

Spark plugs 

Flame detectors 

Foreign bodies 

Distortions and deformations 

Coating condition 

Cracks 

Games 

Clogged cooling holes 

Oxidation / Corrosion / Erosion 

Loss of small interior particles 

Traces of internal leakage 

Traces of local excessive temperature 

Clogged cooling holes 

Abnormal wear 

Repair / overhaul: 

Combustion chambers 

Transition piece 

Burners 

Interconnection tubes 

H
o

t 
g

a
s 

st
re

a
m

 i
n

sp
ec

ti
o

n
s 

Directors, all floors 

Blades, all floors 

Outer protection ring 

Labyrinth seals 

Wheel space thermocouple 

Turbine exhaust housing 

Axial compressor discharge 

vanes 

IGV 

Repair / overhaul 

Directors 

Restitution coating 

Blades 

G
en

er
a

l 
re

v
is

io
n

 

Compressor vanes 

Turbine wheels 

Blade dovetails 

Supported area of the tree 

Bearings 

Labyrinth seals 

Intake system 

Exhaust system 

Other auxiliary systems 

Repair / Repair 

Directional blades 

Stator protection rings 

IGV 

Bearings and seals 

Compressor vanes 

However, implementing this maintenance 

process is done after an analysis of the various 

operating factors influencing the maintenance of the 

turbine. Hence, the factors having the most influence 

on the life of the parts are the frequency of starts and 

the load on this rotating machine. Hence, at each 

turbine startup, the parts of the hot gas path are 

subjected to a considerable thermal cycle.  
 

 

Fig. 14. Inspection of the flame tubes 

 

Practically, when the starts and stops of a turbine are 

frequent, the life of the parts of the gas-path heat is 

shorter than that of parts of another turbine operating 

in service. As well as the variation of the turbine 

load, up to 100% of the power, moderately 

influences the life of the turbine parts, in particular, 

if this variation is frequently abrupt. 

 

Fig. 15. Inspection of injector tanks 
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Fig. 16. General high pressure turbine overhaul 

 

Fig. 17. General rotor overhaul 

 

Fig. 18. General compressor overhaul 

Correct operation of the MS5002C gas turbine 

depends on the developed maintenance program. 

The aim is to keep equipment in good operating 

conditions, detect problems and breakdowns, and 

diagnose the nature and severity of failures that 

occur during their operation. Based on an analysis 

and identification of all failure modes, using 

reliability indices which are expressed by well-

adapted models to get stable operation with good 

reliability. 

 

Fig. 19. General turbine section overhaul 

 

6. CONCLUSION  

 

The proposed two-parameter Weibull and 

modified Weibull MS5002C gas turbine reliability 

models have been tested and validated, with 

prediction errors converging to zero. This approach 

made it possible to model the acts of degradation of 

the components of the examined gas turbine, and to 

estimate and plan the duration of malfunction for a 

scheduled maintenance of this machine. First, the 

graphical method which uses a functional scale 

paper of the Weibull paper is made to obtain the 

parameters of the reliability model. Then, the turbine 

reliability estimation is modeled using turbine 

operating data based on two reliability models. The 

first model is the two-parameter Weibull model, and 

the second proposed model is based on the derivative 

of the modified Weibull distribution. After the 

statistical study of the investigated turbine failures, 

using four methods to determine their estimated 

parameters from these two reliability models. A 

comparative study was developed to determine the 

best estimate of these parameters. In this perspective, 

this work confirms that the method with maximum 

likelihood estimator gives best estimates with small 

mean squared errors using the modified Weibull 

distribution for the case of the studied turbine. 

The obtained results in this work show that the 

reliability models of the gas examined turbine using 

the two-parameter Weibull distribution allows to 

estimates �̂� = 0.8694809and �̂� = 107.6626769, 

the use of the proposed modified Weibull 

distribution gives estimated values �̂� = 0.0254027, 

�̂� = 0.7754443 and �̂� = 0.000397175with perfect 

fit with estimation based on maximum likelihood. 

For the case of estimation based on the moments 

method, the two-parameter Weibull distribution 

gives an estimate of �̂� = 0.9625049 and �̂� =
120.1602, but for the modified Weibull distribution, 

it is not possible to use the moments method to 

estimate the parameters of the distribution, because 

the expressions of moments are analytically 

insolvent. Also, the estimation based on the 

nonparametric regression method of the percentiles, 



DIAGNOSTYKA, Vol. 23, No. 1 (2022)  

Djeddi AZ, Hafaifa A, Iratni A, Kouzou A: Gas turbine reliability estimation to reduce the risk of … 

 

16 

the obtained results by two-parameter Weibull 

allows to estimate �̂� = 100.0366 for the 

probabilities 𝑃1 = 0.5433168 and 𝑃2 =

0.9872112and for the estimated value �̂� =
0.7809538for the probabilities 𝑃1 = 0.8626238 

and 𝑃2 = 0.9773102.  

Hence, the proposed modified Weibull 

distribution allows the selection of the probabilities, 

𝑃1, 𝑃2 and 𝑃3 of the percentiles of the minimized 

sample of the studied turbine failure data,  this allows 

to estimate �̂� = 0.01467593, �̂� = 0.9107816 and 

�̂� = −0.0004348491, for the probabilities 𝑃1 =
0.5433168, 𝑃2 = 0.9872112 and 𝑃3 =
0.8626238. And finally, the study of estimation 

based on the least squares method makes it possible 

to develop the approximation model based on 

Weibull with two parameters, with the estimates of 

the variables of �̂� = 104.6549 and �̂� = 0.7666161 

and allows to develop the model of approximation 

for the proposed modified Weibull distribution, with 

good quality estimates of the reliability variables 

affected by random errors, with estimation of �̂� =

0.01551676, �̂� = 0.901499 and �̂� =
−0.0004526382. 

This makes it possible to develop the examined 

turbine maintenance plan base on the obtained 

results from analysis of reliability indices using 

actual data of turbine failure times with modified 

Weibull model exploration. This study and analysis 

then made it possible to improve their operation with 

a good analysis of the experience feedback, and to 

provide essential data to establish the maintenance 

choices for the development of the reliability method 

with experience feedback.  
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